51,584 research outputs found

    Existence of compatible contact structures on G₂ -manifolds

    Get PDF
    In this paper, we show the existence of (co-oriented) contact structures on certain classes of G(2)-manifolds, and that these two structures are compatible in certain ways. Moreover, we prove that any seven-manifold with a spin structure (and so any manifold with G(2)-structure) admits an almost contact structure. We also construct explicit almost contact metric structures on manifolds with G(2)-structures

    Spin-triplet superconductivity in a weak-coupling Hubbard model for the quasi-one-dimensional compound Li0.9_{0.9}Mo6_6O17_{17}

    Get PDF
    The purple bronze Li0.9_{0.9}Mo6_6O17_{17} is of interest due to its quasi-one-dimensional electronic structure and the possible Luttinger liquid behavior resulting from it. For sufficiently low temperatures, it is a superconductor with a pairing symmetry that is still to be determined. To shed light on this issue, we analyze a minimal Hubbard model for this material involving four molybdenum orbitals per unit cell near quarter filling, using asymptotically exact perturbative renormalization group methods. We find that spin triplet odd-parity superconductivity is the dominant instability. Approximate nesting properties of the two quasi-one-dimensional Fermi surfaces enhance certain second-order processes, which play crucial roles in determining the structure of the pairing gap. Notably, we find that the gap has accidental nodes, i.e. it has more sign changes than required by the point-group symmetry.Comment: Update

    Holography with Gravitational Chern-Simons Term

    Full text link
    The holographic description in the presence of gravitational Chern-Simons term is studied. The modified gravitational equations are integrated by using the Fefferman-Graham expansion and the holographic stress-energy tensor is identified. The stress-energy tensor has both conformal anomaly and gravitational or, if re-formulated in terms of the zweibein, Lorentz anomaly. We comment on the structure of anomalies in two dimensions and show that the two-dimensional stress-energy tensor can be reproduced by integrating the conformal and gravitational anomalies. We study the black hole entropy in theories with a gravitational Chern-Simons term and find that the usual Bekenstein-Hawking entropy is modified. For the BTZ black hole the modification is determined by area of the inner horizon. We show that the total entropy of the BTZ black hole is precisely reproduced in a boundary CFT calculation using the Cardy formula.Comment: 19 pages, Latex; v3: minor corrections, some clarification

    Monopoles and Knots in Skyrme Theory

    Get PDF
    We show that the Skyrme theory actually is a theory of monopoles which allows a new type of solitons, the topological knots made of monopole-anti-monopole pair,which is different from the well-known skyrmions. Furthermore, we derive a generalized Skyrme action from the Yang-Mills action of QCD, which we propose to be an effective action of QCD in the infra-red limit. We discuss the physical implications of our results.Comment: 4 pages. Phys. Rev. Lett. in pres

    Black hole quasinormal modes using the asymptotic iteration method

    Full text link
    In this article we show that the asymptotic iteration method (AIM) allows one to numerically find the quasinormal modes of Schwarzschild and Schwarzschild de Sitter (SdS) black holes. An added benefit of the method is that it can also be used to calculate the Schwarzschild anti-de Sitter (SAdS) quasinormal modes for the case of spin zero perturbations. We also discuss an improved version of the AIM, more suitable for numerical implementation.Comment: 10 pages, LaTeX; references added; substantially expanded versio
    • 

    corecore